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A Remark on the KAM Theorem Applied to a 
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We consider a planar four-vortex system with unit intensities and apply the 
KAM theorem for two-dimensional tori with fixed frequency. We obtain a 
rigorous lower bound for the stochasticity threshold of the torus with rotation 
number ~o = ( x / 5 -  1 )/2 and compare our result with numerical experiments. 
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1. I N T R O D U C T I O N  

We consider a planar four-vortex system with positive intensities kl ..... k4 .  

As shown by Ziglin, ~ the system is not integrable and one can reduce it to 
a two-degree-of-freedom Hamil tonian system,(2'3) for which the 
corresponding Hamiltonian looks like a Hamiltonian near an integrable 
0 ne: 

H(A1, A2, 01, q~2; g )=h(A1,  A2) + ef(Ai, A2, 01, 02; ~) 

here the perturbing parameter  e is equal to the ratio between the average 
distance (d12 + d34)/2 [dij = dist(i, j ) ]  and the distance d of the mass centers 
of the couples (1, 2) and (3, 4) (see Fig. 1 below). 

Khanin ~2) applied the KAM theorem to the four-vortex system in 
order to state the existence of a nonempty set of initial conditions for which 
one has a quasiperiodic motion. In this paper we want to complete 
Khanin's  proof  giving an explicit rigorous lower bound on the size of the 
perturbation necessary for the disappearence of an analytic K A M  torus 
with given rotation number  co. We fix the strengths equal to one and the 
pulsation co = (x/~ - 1 )/2. 
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An application of the KAM computer-assisted algorithm given in ref. 4 
shows that for ]e[ < eKAM ---=- 7.81 X 10 23 there exists an invariant torus with 
rotation number ~o (see Section 3). 

Since a numerical integration of the equations of motion (see Sec- 
tion 4) shows that the critical value at which we expect the transition to a 
chaotic behavior is ec ~ 0.023, then the ratio between the numerical and the 
KAM values is ec/eKA M ~-- 2.94 x 10 2~ showing that the theoretical result is 
very far from reality. We used the complicated algorithm described in ref. 4, 
since a naive application of KAM theory would lead to an even worse 
estimate (say, e < 10 34). 

We remark that one could apply some perturbation theory 
techniques, (5) or different KAM algorithms, (6) to obtain a better bound in 
simpler problems. But the complicate structure of the four-vortex 
Hamiltonian does not allow an easy application of these techniques. 

2. H A M I L T O N I A N  OF FOUR VORTICES 

We consider a planar four-vortex system with positive strengths kl,  
k2, k3, k4; in Cartesian coordinates (xi, yi), i=1, . . . ,4  (Fig. 1), the 
Hamiltonian takes the form 

1 4 
k i k j l n  d o. (2.1) H -  2rc~..=1 

i<j 

where di, j =  [ (Xi--Xj)  2 ~- (Yi--  yj)2]l/2. 

Y 

(x4,Y 4) ( % - ' Y l ) /  dl  4 \ 

[x2' y2/12 -d23 d~ 
(x3,Y 3) 

')X 

Fig. 1. Representation of the planar four-vortex system in cartesian coordinates. 
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It is well known that the system under consideration admits four dif- 
ferent first integrals given by the Hamiltonian itself, the center of vorticity, 
and the angular momentum. Nevertheless, as shown by Ziglin, (~) these 
integrals are not sufficient to state the integrability of the four-vortex 
system. 

To have the Hamiltonian (2.1) in action-angle variables, one has 
to make some changes of coordinates, (21 using the first integrals of the 
motion. After some computations, one obtains a two-degree-of-freedom 
Hamiltonian system whose Hamiltonian, expressed in terms of 
action-angle variables (A1, A2, ~bl, ~b2) (and of a perturbing parameter e, 
whose precise definition will be given below), takes the form 

H(Ai, A2, 01, fb2; ~)= h(A~, A2) + g(Ax, A2, ~1, q~2; e) 
(2.21 

(A1, A2)~ R 2, (q~ l ,~2)eT  2 

(T 2 = standard bidimensional toms), with g(A1, A2, q~t, q}2; O) = O. 
The physical meaning of the (A, ~b) variables is the following: 

[ (kl -t- k2) A ]~/2 

are the po la r  coordinates o f  the vector (x~ - x2, y~ - Y2); and 

[2 (ks+k4)  q'/z b21 

are the polar coordinates of the vector (x 3 - x 4 ,  Y3-  .Y41. 
In order to define the perturbing parameter e, let us introduce the 

variables (A3, ~b3) such that 

(k~ +kz)(k3+k4) & ' ~ 

are the polar coordinates of the vector (Z~- Z2, r /1-  r/z), where 

k~xI + k 2 x  2 k3x 3 + k a x  4 
Z1 ~" k l  + k2 ' Z2 =- k3 + ka 

kl Yl + k2 Y2 k3 Y3 -k- k 4 Y4 
r/l~ k l + k  2 ' r/2--= k 3 + k  4 

It turns out that the quantity 2 = AI + A2-I-A 3 is a constant (since the 
Hamiltonian depends only upon ~bi- ~bj; see ref. 2). Thus we define e as 

e -  #/2, with # = (A ~ + A~ 

where A ~ and A ~ are the initial unperturbed values of A1 and A 2 (namely, 
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with e = 0). Let us denote by d the distance between the centers of mass of 
the couples (1, 2) and (3, 4) (see Fig. 1). Then the perturbing parameter e is 
in turn related to the ratio between the average distance (d12 + d34)/2 and d. 

Now, if d is much bigger than the distances d12 and d34 , ~ is very small 
and the system becomes near to an integrable model. 

We report here the explicit expressions for the functions h and g, with 
the assumption of identical strengths: kl . . . . .  k 4 = k: 

k 2 
h(A1, A2) - ---~ (ln A~ + in A2) 

g(A1, Az, ~bl, 0z; e) 

- 4~ In 1+ ( 1 - 2 k ) A ~ + ( 1 - 2 k ) A  2 

+ l n  1+~-~ ( 1 - 2 k ) A l + ( 1 - 2 k ) A 2  

+ l n  l+~-fi~ (1 -2k )A~+(1-2k )A2  

- 2  cos l 

\ ] 1/2 

+ l n  l+~-~p (1 -2k )A~+(1-2k )A2  

(2.3) 
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3. K A M  E S T I M A T E S  

In order to apply the analytic version of the KAM theorem in the 
formulation given in ref. 4, we want to have an Hamiltonian of the form 

H(A1,A2,(JI,(J2;e)=h(A1,Az)+gf(A,,A2,~I,~2;e) (3.1) 

To this end, we expand the logarithms in (2.3) in Taylor series with respect 
to e. 

Once (2.2) is reduced to the form (3.1), we fix the particular torus 
T(co)-= {Ao} • T 2, with 

(Oh(A~176 Oh(A~176 (x/-5-1 ) 
co - \ ~-~-- , ~-A-2 J = \ ~ '  1 (3.2) 

Our aim is to investigate the stability of T(co), giving an explicit 
estimate of the critical size ~<. at which we expect the disappearance of such 
a torus. 

Before stating the theorem, let us introduce some definitions; set 

SR(A0)= {A ER2/IA-Ao] ~<R} 

SR(Ao) = {A ~ C2/]A- Ao] ~<R} 

D2~= {zEC2/e-~< ]zil < e  ~, i =  1, 2} 

Note that z is related to ~b by z = (Zl, z2) = (ei% ei~). 
To apply the KAM theorem, one has to satisfy the following con- 

ditions: 

(i) h and f must be holomorphic in SR(Ao) , SR(Ao)x D~. 

(ii) co must satisfy the Diophantine inequality: 

I(-O'Y]-l~C [Vl 2, VYEZ 2 and for some C > 0  

(iii) h has to be nondegenerate: 

l-O2h ) ] r  VA det [_~A 2 (A ~ SR(Ao) 

In our problem (i) is satisfied with the choice R =0.07, ~ = 3; (ii) is 
fulfilled by the pulsation (3.2) with a constant C =  (3 + x/5)/2; and (iii) is 
automatically satisfied. 
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Then we have the following result: 

T h e o r e m .  Consider the Hamiltonian (3.1) corresponding to a 
planar four-vortex system with equal strengths and fix a torus T(co) with 
rotation number (3.2). Set R--0.07 and ~ = 3 ;  then, for every tel < 
7.81 x 10 23 there exists in SR(Ao) a torus T,(co) with rotation number co, 
which is an invariant torus for the Hamiltonian flow associated with (3.1). 

The proof of the theorem follows by an easy generalization of the com- 
puter-assisted KAM algorithm given in ref. 4 to a two-dimensional 
problem. In the KAM proof one performs a canonical change of variables 
in order to reduce the initial Hamiltonian H0 = ho + efo to one of the 
form H~ = h i  + e 2 f l  �9 Then, one proceeds by a superconvergent iteration 
of this method, reducing Hi=hj-l-e2Jfj t o  the Hamiltonian Hs+~= 

In order to be able to make such a reduction, one has to satisfy a 
smallness requirement on e at each step Hj--, Hj+I for every j ~> 0. These 
smallness conditions are "optimized" in ref. 4, to which we refer for the 
details of the proof. Moreover, since these conditions depend crucially on 
the choice of the analyticity parameters R, 4, we set R = 0.07, ~ -= 3 in order 
to "optimize" the final result. Notice that in our computations we have set 
k 1 . . . . .  k 4 = 1, since a rescaling of the strengths by a same factor does 
not affect the dynamics of the system. 

. . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  . , . . ~ . . .  

[ d )  . . 0 2 3  

- : , . 

Fig. 2. Po incar6  m a p s  on the (~bl, A1) p lane  ( - - n  ~< ~1 <~ n, 0.07 ~ A1 ~<0.2) for different 
ini t ia l  values  of the pe r tu rb ing  p a r a m e t e r  e. (a)  refers to e = 0.00001, (b) e = 0.005, (c) e = 0.01, 

(d) ~ = 0.023. 
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4. N U M E R I C A L  EXPERIMENTS 

We compare the theoretical result given in Section 3 with a naive 
numerical experiment. Starting with the Hamiltonian (2.2), we perform a 
direct numerical integration of the Hamilton equations, using the 
Runge-Kutta method at the fourth order. 

A Poincar6 map on the (~b~, A~) plane shows that for e ~ 0 the torus 
T(~o) is described by an almost straight line (see Fig. 2a). Increasing e, the 
line is gradually distorted (see Figs. 2b and 2c), until one reaches the 
critical value ~c, at which chaos appears (see Fig. 2d). 

The numerical result for the stochasticity threshold is ec = 0.023, which 
is in accordance with the critical value given by Aref and Pomphrey. ~7) 
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